A bound for the number of different basic solutions

 generated by the simplex method(Tamonari Kitahara - ShinjiMizuno) Math. Program., Ser. A (2013) 137:579-585

The Simplex and Policy-Iteratian Methads are Strongly Palynomial for the Markov Decisian Problem with Fixed Discount (Yinyu Ye) MATHEMATICS IF IPERATILNS RESEARCH Val. 36, No. 4, November 20ill, pp. 593-603

RZ AbdAziz (DI)

Contents

- Introductions
- Simplex Methad far LP
- Analysis
- Markav Decision Problem
- Conclusian
- Intraductions
- Simplex Methad far LP
- Analysis
- Markav Decisian Problem
- Canclusion

Intraduction

- The simplex methad for LP was ariginally develaped by Dantzig.
- In practice, the policy-iteration methad, including the simple policy-iteration ra Simplex method, has been remarkably successful and shown to be mast effective and widely used.
- In spite of the practical efficiency of the simplex method, do nat have any good bound for the number of iterations (the bound was only the number of bases $\left.\frac{n!}{m!(n-m)!}\right)$.
- Klee and Minty showed that the simplex methad needs an exponential number of iterations for an elaborately designed problem LP.
- Melekapaglou and Condon (1990) showed that a simple policyiteration methad, with the smallest index pivating rule, needs an exponential number of iterations far solving an MDP problem regardless of discount rates.

Intraduction

Linier Programming rectangular feasible region

Number of Iterations (ar number of vertices generated) is

$$
2^{n}=8
$$

The number of different basic feasible solutions (BFSs) generated by the simplex method with Dantzig's rule (the most negative pivating rule) is bounded by

$$
n\left\lceil m \frac{\gamma}{\delta} \log \left(m \frac{\gamma}{\delta}\right)\right\rceil
$$

where
$n \quad$:The number of variables
m : The number of canstraints
δ, γ : the minimum and the maximum values of all the positive elements of primal BFss
When the primal problem is nondegenerate, it becomes a bound for the number of iterations. The bound depends only on the constraints of LP

If apply the result to an LP where a constraint matrix is totally unimodular and a constant vector \boldsymbol{b} is integral, the number of different solutions generated by the simplex method is at most

$$
n\left\lceil m\|b\|_{1} \log \left(m\|b\|_{1}\right)\right\rceil
$$

Result ((inyy Y_{e})

The classic simplex method, or the simple policy-iteration methad, with the greedy pivating rule, is a strongly polynomial-time algorithm for MDP with fixed discount rate:

$$
\frac{m^{2}(k-1)}{1-\gamma} \cdot \log \left(\frac{m^{2}}{1-\gamma}\right)
$$

and each iteration uses at mast $m^{2} k$ arithmetic operations, where γ is the fixed discount rate

In general the number of iterations is baunded by

$$
\frac{m^{2}(n-m)}{1-\gamma} \cdot \log \left(\frac{m^{2}}{1-\gamma}\right)
$$

where n is the total number of actions.

- Simplex Methad far LP
- Analysis
- Markav Decisian Prablem
- Conclusian

Linier Programming and Its Dual

The standard farm of Linier Programming is

$$
\begin{gathered}
\min \quad c^{T} x \\
\text { subject to } A x=b, \quad x \geq 0
\end{gathered}
$$

where $A \in R^{m \times n}, b \in R^{m}$ and $c \in R^{n}$ are given data, and $x \in R^{n}$ is a variable vector.

The dual problem of (I) is

$$
\begin{gathered}
\max \quad b^{T} y \\
\text { subject to } A^{T} y+s=c, \quad s \geq 0,
\end{gathered}
$$

where $y \in R^{m}$ and $s \in R^{n}$ is a variable vectar.

Assumptions

Assume that

- $\operatorname{Rank}(A)=m$,
- the primal problem has an aptimal solution,
- an initial BFS \boldsymbol{x}^{0} is available.

Let \boldsymbol{x}^{*} be an aptimal BFS of the primal problem (I). ($\boldsymbol{y}^{*} ; \boldsymbol{s}^{*}$) be an aptimal solution of the dual problem (2), and z^{*} be the optimal value of (I) and (2).

Given a set of indices $\boldsymbol{B} \subset\{\mathbf{1 ; ~ 2 ; ~ : ~ : ~ : ~ ; ~} \boldsymbol{n}\}$, we split $\boldsymbol{A}, \boldsymbol{c}$, and \boldsymbol{x} according to \boldsymbol{B} and $\boldsymbol{N}=\{\mathbf{1 ; 2 ; :}::: ; \boldsymbol{n}\}-\boldsymbol{B}$ like

$$
A=\left[A_{B}, A_{N}\right], c=\left[\begin{array}{l}
c_{B} \\
c_{N}
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right] .
$$

Standard form of LP

The standard form of $L P$ is written as

$$
\begin{equation*}
\min c_{B}^{T} x_{B}+c_{N}^{T} x_{N} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { subject to } A_{B} x_{B}+A_{N} x_{N}=b, \\
& x_{B} \geq 0, \quad x_{N} \geq 0
\end{aligned}
$$

From (I) and (3)

$$
\begin{gathered}
A x=A_{B} x_{B}+A_{N} x_{N}=b \\
x_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N}
\end{gathered}
$$

Then

$$
\begin{aligned}
c^{T} x & =c_{B}^{T} x_{B}+c_{N}^{T} x_{N} \\
& =c_{B}^{T}\left(A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N}\right)+c_{N}^{T} x_{N} \\
& =c_{B}^{T} A_{B}^{-1} b+\left(c_{N}-A_{N}^{T}\left(A_{B}^{-1}\right)^{T} c_{B}\right)^{T} x_{N}
\end{aligned}
$$

Basic Feasible Solutions (BFSs)

The primal problem for the basis $\boldsymbol{B} \in \mathrm{B}$ and $\boldsymbol{N}=\{\mathbf{1} ; \mathbf{2} ;::: ; \boldsymbol{n}\}-\boldsymbol{B}$ can be written as

$$
\begin{gathered}
\min \quad c_{B^{t}}^{T} A_{B^{t}}^{-1} b+\left(c_{N^{t}}-A_{N^{t}}^{T}\left(A_{B^{t}}^{-1}\right)^{T} c_{B^{t}}\right)^{T} x_{N^{t}} \\
\text { subject to } x_{B^{t}}=A_{B^{t}}^{-1} b-A_{B^{t}}^{-1} A_{N^{t}} x_{N^{t}} \\
x_{B^{t}} \geq 0, \quad x_{N^{t}} \geq 0 .
\end{gathered}
$$

$\bar{c}_{N^{t}}=c_{N^{t}}-A_{N^{t}}^{T}\left(A_{B^{t}}^{-1}\right)^{T} c_{B^{t}}$ be the reduced cost vector, then we can be written as

$$
\begin{gather*}
\min \quad c_{B^{t}}^{T} A_{B^{t}}^{-1} b+\left(\bar{c}_{N^{t}}\right)^{T} x_{N^{t}} \tag{5}\\
\text { subject to } x_{B^{t}}=A_{B^{t}}^{-1} b-A_{B^{t}}^{-1} A_{N^{t}} x_{N^{t}}, \\
x_{B^{t}} \geq 0, \quad x_{N^{t}} \geq 0 .
\end{gather*}
$$

$\delta=$ minimum and $\gamma=$ maximum

Let δ and γ be the minimum and the maximum values of all the positive elements of BFSs. Then for any BFS \widehat{x} and any $\boldsymbol{j} \in\{\mathbf{1 ; 2 ;}::: ; \boldsymbol{n}\}$, if $\widehat{x}_{j} \neq 0$, we have

$$
\begin{equation*}
\delta \leq \widehat{x}_{j} \leq \gamma \tag{Б}
\end{equation*}
$$

The values of δ and γ depend anly an \boldsymbol{A} and \boldsymbol{b}, but not on \boldsymbol{E}.

Figure of δ, γ and BFSs (vertices)

Pivating rule

When $\bar{c}_{N^{t}} \geq 0$, the current solution is aptimal. Dtherwise we conduct a pivat. Under the mast negative rule, we choase a nanbasic variable whose reduced cost is minimum, i.e., we choose an index

$$
\widehat{j}^{t}=\arg \min _{j \in N_{t}} \overline{c_{\mathrm{j}}}
$$

Set $\Delta^{t}=-\bar{c}_{\vec{\mu}}>0$, that is, $-\Delta^{t}$ is the minimum value of the reduced costs

Notations

$\boldsymbol{x}^{*} \quad$: An aptimal basic feasible solution of (1)
($\boldsymbol{y}^{*} ; \boldsymbol{s}^{*}$): Aп aptimal solution of (2)
$z^{*} \quad:$ The optimal value (I) and (2)
$\boldsymbol{x}^{t} \quad$: The \boldsymbol{t}-th iterate of the simplex methad
$\boldsymbol{B}^{t} \quad$: The basis of \boldsymbol{x}^{t}
$\boldsymbol{N}^{t} \quad$: The nonbasis of \boldsymbol{x}^{t}
$\bar{c}_{N^{t}} \quad$: The reduced cost vector at \boldsymbol{t}-th iteration
$\Delta^{t} \quad:-\min _{j \in N_{t}} \overline{c_{j}}$
$\hat{j}^{t} \quad:$ An index chasen by mast negative at t -th iteration

A lower bound of Iptimal Value of Simplex method

Lemmal Letz* be the aptimal value of problem (I) and \boldsymbol{x}^{t} be the \mathbf{t}-th iterate generated by the simplex method with the most negative rule. Then we have

$$
\begin{equation*}
z^{*} \geq c^{T} x^{t}-\Delta^{t} m \gamma \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& \min \quad c_{B^{t}}^{T} A_{B^{t}}^{-1} b+\left(\bar{c}_{N^{t}}\right)^{T} \\
& \text { subject to } x_{B^{t}}=A_{B^{t}}^{-1} b-A_{B^{t}}^{-1} A_{N^{t}} x_{N^{t}} \\
& \\
& x_{B^{t}} \geq 0, \quad x_{N^{t}} \geq 0 .
\end{aligned}
$$

Next Section

- Intraductions
- Simplex Methad for LP
- Analysis
- Markav Decisian Problem
- Canclusian

Proof Lemmal

Proof Let x^{*} be a basic optimal solution of Problem (I). Then we have

$$
\begin{aligned}
& z^{*}=c^{T} x^{*} \\
&=c_{B^{t}}^{T} A_{B^{t}}^{-1} b+\bar{c}_{N^{T}}^{T} x_{N^{t}}^{*} \\
& \geq c^{T} x^{t}-\Delta^{t} e^{T} x_{N^{t}} \\
& \geq c^{T} x^{t}-\Delta^{t} m \gamma
\end{aligned}
$$

where the second inequality follows since \boldsymbol{x} * has at most \boldsymbol{m} positive elements and each element is bounded above by γ.

Reduction Rate (Thearem I)

A constant reduction of the gap ($\boldsymbol{c}^{T} \boldsymbol{x}^{t}-\mathbf{z}^{*}$) whenban iterate is updated. The reduction rate $\left(1-\frac{\delta}{m \gamma}\right)$ does not dependent on the objective vector \boldsymbol{c}.

Theorem I Let x^{t} and \boldsymbol{x}^{t+1} be the t-th and $(\boldsymbol{t}+\mathbf{1})$-th iterates generated by the simplex methad with the most negative rule. If x^{t+1}, x^{t}, then we have

$$
\begin{equation*}
\boldsymbol{c}^{T} \boldsymbol{x}^{t+1}-z^{*} \leq\left(1-\frac{\delta}{m \gamma}\right)\left(\boldsymbol{c}^{T} \boldsymbol{x}^{t}-z^{*}\right) \tag{8}
\end{equation*}
$$

Proof TheoremI

Prouf. Let $x_{f t}^{t}$ te the entering variable chosen at the t-th iteration. If $x_{j t}^{t+1}=0$, then we have $x^{t+1}=x^{t}$, a contradiction occurs. Thus $x_{j t}^{t+1} \neq 0$, and we have $x_{j t}^{t+1} \geq \delta$ from ((G). Then we have

$$
\begin{aligned}
c^{T} x^{t}-c^{T} x^{t+1} & =\Delta^{t} x_{t^{t}}^{t+1} \\
& \geq \Delta^{t} \delta \\
c^{T} x^{t}-c^{T} x^{t+1} & \geq \frac{\delta}{m \gamma}\left(c^{T} x^{t}-z^{*}\right) \\
c^{T} x^{t+1}-z^{*} & \leq\left(1-\frac{\delta}{m \gamma}\right)\left(c^{T} x^{t}-z^{*}\right) .
\end{aligned}
$$

The best improvement pivating rule (Corallary I)

The best improvement pivating rule, the objective function reduces at least as much as that with with the most negative rule. So the next corallary follows

Carollary 1 Letx \boldsymbol{x}^{t} and \boldsymbol{x}^{t+1} be thet-th and $(\boldsymbol{t}+\mathbf{1})$-th iterates generated ty the simplex method with the most negative rule. If x^{t+1}, x^{t}, then alsa have (g)

$$
\boldsymbol{c}^{T} \boldsymbol{x}^{t+1}-z^{*} \leq\left(1-\frac{\delta}{m \gamma}\right)\left(c^{T} \boldsymbol{x}^{t}-z^{*}\right) .
$$

Number of solutions (Carollary 2)

From Theorem I and Carallary I, we can get an upper bound for the number of different BFSs generated by simplex methad.

Corollary 2.

Let \bar{x} be a second aptimal BFS of LP (I), that is, a minimal BFS except for optimal BFSs. When we apply the simplex method with the most negative rule (ør the best improvement rule) from an initial BFS x^{0}, is bounded by

$$
\left\lceil m \frac{\gamma}{\delta} \log \frac{\left(c^{T} x^{0}-z^{*}\right)}{\left(c^{T} \bar{x}-z^{*}\right)}\right\rceil
$$

Proof corillary 2

Proof Let x^{t} be the t-th iterates generated by simplex methad and let \tilde{t} be the number of different BFSs appearing up to this iterate. Then we have

$$
c^{T} x^{t}-z^{*} \leq\left(1-\frac{\delta}{m \gamma}\right)^{\tilde{t}}\left(c^{T} x^{0}-z^{*}\right)
$$

From (8). If \tilde{t} is bigger than or equal to the number in the carollary, we get

$$
c^{T} x^{t}-z^{*}<\left(c^{T} \bar{x}-z^{*}\right) .
$$

Since \bar{x} is a second optimal BFS of $\mathrm{LP}(\mathrm{I}), x^{t}$ must be an optimal BFS.

Proof corillary 2

The number of different BFSs generated by the simplex method

$$
\begin{aligned}
c^{T} \bar{x}-z^{*} & \leq\left(1-\frac{\delta}{m \gamma}\right)^{\bar{t}}\left(c^{T} x^{0}-z^{*}\right) \\
1 & \leq\left(1-\frac{\delta}{m \gamma}\right)^{\bar{t}}\left(\frac{c^{T} x^{0}-z^{*}}{c^{T} \bar{x}-z^{*}}\right) \\
\log 1 & \leq \log \left(1-\frac{\delta}{m \gamma}\right)^{\bar{t}}+\log \left(\frac{c^{T} x^{0}-z^{*}}{c^{T} \bar{x}-z^{*}}\right) \\
0 & \leq-\bar{t} \frac{\delta}{m \gamma}+\log \left(\frac{c^{T} x^{0}-z^{*}}{c^{T} \bar{x}-z^{*}}\right) \\
\bar{t} & \leq \frac{m \gamma}{\delta} \log \left(\frac{c^{T} x^{0}-z^{*}}{c^{T} \bar{x}-z^{*}}\right)
\end{aligned}
$$

Aп Uррег Bound proportional gap (Lemma 2)

If the current solution is not aptimal, there is a basic variable which has an upper bound proportional to the gap between the objective value and the aptimal value

Lemma 2 Let x^{t} bet-th iterate generate by simplex method. If x^{t} is not aptimal, there exists $\bar{j} \in B^{t}$ such that $x \frac{t}{j}>0$ and

$$
\begin{equation*}
x_{\dot{j}}^{k} \leq \frac{m\left(c^{T} x^{k}-z^{*}\right)}{c^{T} x^{t}-z^{*}} x_{\dot{j}}^{t} \tag{II}
\end{equation*}
$$

For any feasible solution x .

An Upper Bound proportional gap (Lemma 2)

Proof Lemma 2

Prouf. From primal (I) and dual (2), we have

$$
\begin{aligned}
c^{T} x^{t}-z^{*} & =c^{T} x^{t}-b^{T} y^{*} \\
& =\left(x^{t}\right)^{T} c-\left(x^{t}\right)^{T} A^{T} y^{*} \\
& =\left(x^{t}\right)^{T}\left(c-A^{T} y^{*}\right) \\
& =\left(x^{t}\right)^{T} s^{*}=\sum_{j \in B^{t}} x^{t} s_{j}^{*}
\end{aligned}
$$

There exists $\bar{j} \in B^{t}$ which satisfies

$$
\begin{aligned}
c^{T} x^{t}-z^{*} & =\left(x^{t}\right)^{T} s^{*} \leq m x_{\dot{j}}^{t} s_{\dot{j}}^{*} \\
m x_{\dot{j}}^{t} s_{\dot{j}}^{*} & \geq c^{T} x^{t}-z^{*} \\
s_{\dot{j}}^{*} & \geq \frac{1}{m x_{\dot{j}}^{t}}\left(c^{T} x^{t}-z^{*}\right)
\end{aligned}
$$

Proof Lemma 2

For any k, the k-th iterate x^{k} satisfies

$$
c^{T} x^{k}-z^{*}=\left(x^{k}\right)^{T} s^{*}=\sum_{j \in B^{t}} x^{k} s_{j}^{*} \geq x_{j}^{t} s_{j}^{*}
$$

which implies

$$
x_{\dot{j}}^{k} \leq \frac{c^{T} x^{k}-z^{*}}{s_{-}^{*}} \leq \frac{m\left(c^{T} x^{k}-z^{*}\right)}{\left(c^{T} x^{t}-z^{*}\right)} x_{j}^{t}
$$

Becomes Zero after Iterate (Lemma 3)

Lemma 3 Let x^{t} be the t-th iterate generated by the simplex method with the most negative rule (the best improvement rule). Assume that x^{t} is not an aptimal solution. Then there exist $\bar{j} \in B^{t}$ satisfying the following two condition.

1. $\mathrm{x}_{\mathrm{j}}^{\mathrm{t}}>0$
2. If the simplex methad generates $\left[\mathrm{m} \frac{\gamma}{\delta} \log \left(\mathrm{m} \frac{\gamma}{\delta}\right)\right]$ different basic solutions after t -th iterate, then x_{j} becomes zero and stays zero

Proof Lemma 3

Proof For $k \geq t+1$, let \widetilde{k} be the number of different basic feasible solution appearing between the $(t+1)$-th and k-th iterations. Then from Theorem I and Lemma 2 , there exist $\bar{j} \in B_{t}$ which satifies

$$
x_{\tilde{j}}^{k} \leq m\left(1-\frac{\delta}{m \gamma}\right)^{\tilde{k}} x_{\tilde{j}}^{t} \leq m \gamma\left(1-\frac{\delta}{m \gamma}\right)^{\tilde{k}}
$$

From definition δ is the minimum value of of all the pasitive elements of primal BFSs.

$$
\delta \leq m \gamma\left(1-\frac{\delta}{m \gamma}\right)^{\tilde{k}}
$$

Proof Lemma 3

$$
\begin{align*}
\delta & \leq m \gamma\left(1-\frac{\delta}{m \gamma}\right)^{\tilde{k}} \\
1 & \leq \frac{m \gamma}{\delta}\left(1-\frac{\delta}{m \gamma}\right)^{\tilde{k}} \\
\log 1 & \leq \log \frac{m \gamma}{\delta}+\tilde{k} \log \left(1-\frac{\delta}{m \gamma}\right) \\
0 & \leq \log \frac{m \gamma}{\delta}-\tilde{k} \frac{\delta}{m \gamma} \\
\tilde{k} \frac{\delta}{m \gamma} & \leq \log \frac{m \gamma}{\delta} \\
\tilde{k} & \leq \frac{m \gamma}{\delta} \log \left(\frac{m \gamma}{\delta}\right) \tag{II}
\end{align*}
$$

Therefore, if $\tilde{k}>\frac{m \gamma}{\delta} \log \left(\frac{m \gamma}{\delta}\right)$, we have $x_{\tilde{j}}^{k}<\delta$, which implies $x_{j}^{k}=0$ from the definition of δ

Bound for the Number of Solutions (Theorem 2)

The event described in Lemma 3 can occur at most once for each variable. Thus we get the following result

Thearem 2 when we apply the simplex methad with the most negative rule (the hest improvement rule for LP (I) having aptima/ solutions, we encuunter at most

$$
\begin{equation*}
\mathrm{n}\left\lceil\frac{m \gamma}{\delta} \log \left(\frac{m \gamma}{\delta}\right)\right\rceil \tag{I2}
\end{equation*}
$$

different basic feasible salutions.
Note that the result is valid even if the simplex method fails to find an optimal solution because of a cycling

Primal problem is Nondegenerate (Carollary 3)

If the primal problem is nondegenerate, we have $x^{t+1} \neq x^{t}$ for all t. This abservation lead to a bound far the number of iterations of simplex method.

Corollary 3 If the prima/prablem is nondegenerate, the simplex method finds an aptimal solution in at most

$$
\mathrm{n}\left\lceil\left.\frac{m \gamma}{\delta} \log \left(\frac{m \gamma}{\delta}\right) \right\rvert\,\right. \text { iterations }
$$

A Totally Unimodular Matrix (Corollary 4)

We consider an LP whose constraint matrix A is totally unimadular and all the elements of b are integers, Then all the element of any BFS are interger, so $\delta \geq 1$. Let $\left(x_{B}, 0\right) \in R^{m} \times R^{n-m}$ be a BFS of (1). Then we have $x_{B}=A_{B}^{-1} b$. Since A is totally unimodular, all the elements of A_{B}^{-1} are ± 1 or 0 . Thus for any $j \in B$ we have $x_{j} \leq\|b\|_{1}$, which implies that $\gamma \leq\|b\|_{1}$.

Corollary 4 Assume that the constraint matrix A of (I) is totally unimodular and the constraint vectorb is integral. When we apply the simplex method with The mast negative rule fo (I), we encounter at most

$$
\begin{equation*}
n\left\lceil m\|b\|_{1} \log \left(m\|b\|_{1}\right)\right\rceil \tag{13}
\end{equation*}
$$

different tosic feasible solutions.

- Intraductions
- Simplex Methad for LP
- Analysis
- Markav Decisian Problem
- Conclusion

Markov Decision Problem (MDP)

The Markov Decision Problem (MDP)

$$
\begin{array}{ll}
\min & c_{1}^{T} x_{1}+c_{2}^{T} x_{2} \\
\text { subject to } & \left(I-\theta P_{1}\right) x_{1}+\left(I-\theta P_{2}\right) x_{2}=e \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Where I is the $m \times m$ identity matrix, P_{1} and P_{2} are $m \times m$ Markov matrices, θ is a fixed discount rate, and e is the vector of all ones. MDP (14) has the following praperties.

1. MDP (14) is nondegenerate.
2. The minimum value of all the positive elements of BFSs is greater than øг equal tol, or equivalently, $\delta \geq 1$.
3. The maximum value of all the positive elements of BFSs is less than ar equal to $\frac{m}{1-\theta}$ ar equivalently. $\gamma \leq \frac{m}{1-\theta}$.

Number of Iterations for MDP

The result obtain a similar result to (Yinyu Ye)
Carollary 5 The simplex method for solving MDP (14) finds an aptimal solution in at mast

$$
\mathrm{n}\left[\frac{m^{2}}{1-\theta} \log \left(\frac{m^{2}}{1-\theta}\right)\right] \text { iterations }
$$

where $n=2 m$
Result (Yinyu Ye)

$$
\frac{m^{2}(n-m)}{1-\gamma} \cdot \log \left(\frac{m^{2}}{1-\gamma}\right)
$$

Next Section

- Intraductions
- Simplex Methad for LP
- Analysis
- Markav Decisian Problem
- Conclusian

Conclusion

- Constant reduction of the gap:

$$
c^{T} x^{t+1}-z^{*} \leq\left(1-\frac{\delta}{m \gamma}\right)\left(c^{T} x^{t}-z^{*}\right)
$$

- The number of BFSs is bounded by

$$
n\left\lceil m \frac{\gamma}{\delta} \log \left(m \frac{\gamma}{\delta}\right)\right\rceil
$$

- Tatally unimadular case: It is baunded by

$$
n\left\lceil m\|b\|_{1} \log \left(m\|b\|_{1}\right)\right\rceil
$$

- MDP case: The number of iterations is bounded by

Tomonari Kitahara - Shinji Mizuno

$$
n\left\lceil\frac{m^{2}}{1-\theta} \log \left(\frac{m^{2}}{1-\theta}\right)\right\rceil
$$

Result (Yinyu Y_{e})

$$
\frac{m^{2}(n-m)}{1-\gamma} \cdot \log \left(\frac{m^{2}}{1-\gamma}\right)
$$

