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Introduction

« The simplex method for LP was originally developed by Dantzig.

* |n practice, the policy-iteration method, including the simple
policy-iteration or Simplex method, has been remarkably
successful and shown to be most effective and widely used.

* |n spite of the practical efficiency of the simplex method, do not

have any good bound for the number of iterations (the bound

was only the number of bases LI

m!(n-m)!"”




Introduction

* Klee and Minty showed that the simplex method needs an
exponential number of iterations for an elaborately designed
problem LP.

» Melekopoglou and Condon (1380) showed that a simple policy-
iteration method, with the smallest index pivoting rule, needs
an exponential number of iterations for solving an MDP
problem regardless of discount rates.




Introduction

Linier Programming rectangular feasible region

‘ o'y

Number of Iterations (or number of vertices generated) is
2" =8.




RBSUIt (Tomonari Kitahara - Shinji Mizuno)

The number of different basic feasible solutions (BFSs) generated by the
simplex method with Dantzig's rule (the most negative pivoting rule) is

bounded by

[ 1og ()

N :The number of variables

where

m  :The number of constraints

d , v : the minimum and the maximum values of all the positive elements of
primal BFSs

When the primal problem is nondegenerate, it becomes a bound for the [ 5 J
number of iterations. The bound depends only on the constraints of LP




RESUIt (Tomonari Kitahara - Shinji Mizuno)

|t apply the result to an LP where a constraint matrix is totally unimodular
and a constant vector b is integral, the number of different solutions
generated by the simplex method is at most

n|m||b]l; log(m||bll,)]




Result (vinyuYe)

The classic simplex method, or the simple policy-iteration method, with the greedy

pivating rule, is a strongly polynomial-time algorithm for MDP with fixed discount
rate:

and each iteration uses at most m2K arithmetic operations, where y is the fixed
discount rate

In general the number of iterations is bounded by

m?(n —m) ( m? )
log

1—-vy 1—-vy
where n is the total number of actions.
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Linier Programming and lts Dual

The standard form of Linier Programming is
min cTX, (1)
subjectto Ax =b, x>0,

where A € R™" b € R™and ¢ € R" are given data, and X € R" is a
variable vectar.

The dual problem of (1) is
max b'y, (2)
subjectto Aly+s=c¢, s>0,

wherey € R™and s € R" is a variable vector.




Assumptions

Assume that
* Rank (A) =m,

« the primal problem has an optimal solution,

« an initial BFS X0 is available.

Let X* be an optimal BFS of the primal problem (1), (y*; s*) be an optimal
solution of the dual problem (Z), and z* be the optimal value of (1) and (2).

Given a set of indices B < {1; 2; : ::

accordingto Band N ={1; 2; : : :;
A= [AB,AN]. C

|l
a O
= ™
e

: n}, wesplit A, ¢, and X

n} —B

ike

XB
_XN]'




Standard form of LP

The standard form of LP is written as

min  chxg + chxy (3)
subject to Agxg + Ayxy = b,
xg = 0, xy = 0.
From (1) and (3)
Ax = Agxpg + Ayxy = b,
xg = Ag'b — AgtAynxy
Then

cTx =chxg + chxy
_ Toa-1 —1 T
= cg(Ag b — Az Anxy) + CyXpy
= cgAg'b + (cy — Ay(AgH) " cp) xy




Basic Feasible Solutions (BFSs)

be written as

min  cjedgih + (cye — Ane(Aze) T cpe) Ty, (4)
subject to xpe = Azib — Agi Ayexyt,
xgt = 0, xyt = 0.

Cyt = Cyt — Aﬁt(A];%)Tth be the reduced cost vector, then we can be
written as

min ¢ eAgib + (Cye)Txye, (5)

subjectto xpe = Anih — Agi Ayexyt,
xgt = 0, xyt = 0.




& = minimum and y = maximum

Let & and y be the minimum and the maximum values of all the positive
elements of BFSs. Then for any BFS X andanyj € {1; 2; :::; n}, it
X; # 0, wehave

6 <Xjsy, (B)
The values of & and y depend only on A and b, but not on £

e
7‘&‘ I
| | Figure of 6, y and BFSs (vertices)
sLb—_—_L __ _
| |
| |
TR




Pivoting rule

When ¢, = 0. the current solution is optimal. Otherwise we conduct a

pivot. Under the most negative rule, we choose a nonbasic variable whose
reduced cost is minimum, i.e., we choose an index

~t e
j =arg grel}vrz Cj
Set A= —c_; > 0, thatis, —A? is the minimum value of the reduced

/
Costs




Notations

x*  : Anoptimal basic feasible solution of (1)
(y*; s7): An optimal solution of (2)
z : The optimal value (1) and (2)
xt : The t-th iterate of the simplex method
Bt :The basis of x
Nt : The nonbasis of xt
Cyt :Ihereduced cost vector at t-th iteration
At :—min Ci

JEN
~t

j : An index chosen by most negative at t-th iteration [17)




A lower bound of Optimal Value of Simplex method

Lemmal /et 27 be the aptimal value of problem (1) and Xt be thet-th iterate
generated by the simplex method with the most negative rule. Then we have

z* > cl'xt — Almy. (7)

- T -1 —
min ¢ eAgib 4+ (Cye)”
subjectto xge = Agib — Agi Ayexye,
Xgt = 0, Xyt = 0.
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Proof Lemma |

Proof Let x™ be a basic optimal solution of Problem (1). Then we have

z*=clx*
T -1 T *
= CBt ABtb ~+ CNtht
clxt — AteTx;,t

cTxt — Atmy

VALY,

where the second inequality follows since x* has at most m positive
elements and each element is bounded above by .




Reduction Rate (Theorem 1)

A constant reduction of the gap (cTxt — z*) whenban iterate is updated.

The reduction rate (1 = miy) does not dependent on the objective vectar c.

Theorem | /et Xt and Xt e thet-th and (t + 1)-th iterates generated by
the simplex method with the most negative rule. If X2, Xt, then we have

ES 6 k
cTxttl — z* < (1 — m—y) (cTxt — z*). (8)




Proof Theorem |

Proof. Let x]ft be the entering variable chosen at the t-th iteration. If

xjt+1 = 0, then we have xt*t1 = xt g contradiction occurs. Thus

Jt+1 i O Ell'ld WE hEVE xj +1> 5 fr‘um (E) Then WE hHVE

cT ot — cTyt+l = Aty t+1
ZAt(S
o)
cTxt — cTxt+t > 2 ((Txt — 2%
my

5
clxttt —z* < (1 — —) (cTxt —z%).
my




The best improvement pivoting rule (Corollary 1)

The best improvement pivoting rule, the objective function reduces at least

as much as that with with the most negative rule. So the next corollary
follows

Corollary 1 /et Xt and X" be thet-th and (t + 1)-th iterates

generated by the simplex method with the most negative rufe. If X1 xt,
then also have (5)

5
cTattl — 72 < (1 — —) (cTxt —z¥).
my




Number of solutions (Corollary 2)

From Theorem | and Corollary |, we can get an upper bound for the number
of different BFSs generated by simplex method.

Corallary 2.

letx be g second optimal BFS of [P (1), that is, a mimimal BFS except for
aptimal BfSs. When we apply the simplex method with the most negative
rule (or the best improvement rule) from an initial 6FS x°, is bounded by

(cTx0-z*)
(cTx -z*)

(d)




Proof corollary 2

Proof Let xt be the t-th iterates generated by simplex method and let
t be the number of different BFSs appearing up to this iterate. Then we
have

5 \¢
clxt —z* < (1 — —) (cTx? —z%).
my

From (8). If € is bigger than or equal to the number in the corollary, we get
cTxt—z* < (cTx —2z%).

Since x is a second optimal BFS of LP (1), xt must be an optimal BFS.




Proof corollary 2

The number of different BFSs generated by the simplex method

5 t
cl’x—z* < <1 - —) (cx° — z%)
my

S\ /cTx0 — 2+

1<(1-—) (=——=

my cTi —z
a1 <log[1—22 t+1 a0 -z
08+ =106 my B\ Tz — 7z

0 < i t1og( =%
o omy B\ Tz -7z

;Y clxV —z*
=75 B\ Tz




An Upper Bound proportional gap (Lemma 2)

It the current solution is not optimal, there is a basic variable which has an
upper bound proportional to the gap between the objective value and the
optimal value

lemma 2 /et xt bet-th iterate generate by simplex method /fxt is not
gotimal there existsj € Bt such that x}t. > 0 and

Kk _ m(cTxk-z*) ¢
xX: < =7 X
J ctxt—z* Ji

(1)

For any feasible solution x.




An Upper Bound proportional gap (Lemma 2)

min  ciAgib + (Cy)T
subject to xgzc = Ag+tb — Azt Ay=xy+,
xgt = 0, xyt = 0.

> m(cTx* — z*)

:
X~
clTxt —z* 7J

M




Proof Lemma 2

Proof. From primal (1) and dual (2). we have

*

clxt —z* =clxt —bly
= (x)Tc — (xH)TATy*
= (e - ATy)
= (7" = Bjepen's]
There exists / € Bt which satisfies

c'xt—z" = (xH's* < 771361—?5]ik

mxj—.tsj—f‘ > cTxt — z*

s LTyt — 5
s; _mxg(cx z*)




Proof Lemma 2

For any k. the k-th iterate x* satisfies

T
cTxlk — 7% = (xk) s* = z xksj* > x]t.sjf

jEBt
which implies
Tk _ %
R Gt )
/ S (cTxt — )




Becomes Zero after lterate (Lemma 3)

Lemma 3 /[etxt be the t-th iterate generated by the simplex method with
the most negative rule (the best improvement rule). Assume that xt /s not

an optimal solution. Then there existj € Bt satistying the follawing two
condition.

1. xjf>0

2. It the simplex method generates [m%log (m %ﬂ different basic

solutions after t-th iterate, then X; becomes zero and stays zero




Proof Lemma 3

Proof Fork >t + 1, let k be the number of different basic feasible
solution appearing between the (¢ + 1)-th and k-th iterations. Then from
Theorem | and Lemma 2, there exist / € B, which satifies

~ ~

xj—f‘ Sm(l—i)kxj—?Smy(l—i)k

my my

From definition & is the minimum value of of all the positive elements of
primal BFSs.

~

6 < 1 5\
< my my




Proof Lemma 3

SSmy(l—miy
my o) k
1= (15,
log 1 Slog%+ k log(l—miy)
OSlog%— ~miy
~ 0 my
km—ySlogT
~ _ my my
k < —"log (T) (1)

Therefore, if k > %log (%) we have xj—{‘ < &, which implies

xj—{‘ = 0 from the definition of &




Bound for the Number of Solutions (Thearem 2)

The event described in Lemma 3 can occur at most once for each variable.
Thus we get the following result

Theorem 2 when we apply the simplex method with the mast negative rule
(the best improvement rule for LF (1) having optimal solutions, we
encounter at most

my my
n|510g ()] ('2)
different basic feasible solutions.

Note that the result is valid even if the simplex method fails to find an
optimal solution because of a cycling




Primal problem is Nondegenerate (Corollary 3)

If the primal problem is nondegenerate, we have xt*1 % x? for all ¢. This
observation lead to a bound for the number of iterations of simplex method.

Corollary 3 /7 the primal problem is nondegenerate, the simplex method
finds an gptimal solution in at most

n [%log (%)} iterations




A Totally Unimodular Matrix (Corollary 4)

We consider an LP whose constraint matrix 4 is totally unimodular and all
the elements of b are integers, Then all the element of any BFS are
interger, so & = 1.let (xg,0) € R™ x R™ ™ be a BFS of (1). Then
we have xg = Ag'b. Since A is totally unimodular, all the elements of
Aglare +1 or 0.Thus for any j € B we have x; < ||bl|;. which

implies that y < ||b||;.

Corollary & Assume that the constraint matrix A of (1) is totally
unimodular and the constraint vector b is integral When we apply the
simplex method with [he most negative rule fo (), we encounter at most

n|m||b|l; log(ml|bl1)] (1)

different basic feasible solutions.
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Markov Decision Problem (MDP)

The Markov Decision Problem (MDP)

min c{x; + clx, (14)
subjectto (I — OPy)x; + (I — OP,)x, = e,
X1, X9 >0

Where I is the m x m identity matrix, P; and P, are m x m Markov
matrices, @ is a fixed discount rate, and e is the vector of all ones. MDP
(14) has the following properties.

. MDP (14) is nondegenerate.

2. The minimum value of all the positive elements of BFSs is greater than
or equal to |, or equivalently, & > 1.
3. The maximum value of all the positive elements of BFSs is less than or

m . m
_ < —
equal to 5 o equivalently, y < —




Number of lterations for MDP

The result obtain a similar result to (Yinyu Ye)

Corollary 8 The simplex method for solving MDP (14) finds an optimal
wheren = 2m

solution in at most
[— log ( ﬂ iterations
Result (Yinyu Ye)

mz(n—m)1 m?
= 0g T
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Conclusion

« [onstant reduction of the gap:
cTxttl —z* < (1 — i) (cTxt — z*).
my

* The number of BFSs is bounded by

n|mjlog (m3)

« Totally unimodular case: It is bounded by
n[ml|bll, log(ml|b|l,)]

* MDP case: The number of iterations is bounded by
Tomonari Kitahara - Shinji Mizuno

n[i5109 (355)

Result (Yinyu Ye)




