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    Introduction 

• The simplex method for LP was originally developed by Dantzig. 

• In practice, the policy-iteration method, including the simple 

policy-iteration or Simplex method, has been remarkably 

successful and shown to be most effective and widely used. 

• In spite of the practical efficiency of the simplex method,  do not 

have any good bound for the number of iterations (the bound 

was only the number of bases 
𝑛!

𝑚! 𝑛−𝑚 !
). 
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    Introduction 

• Klee and Minty showed that the simplex method needs an 

exponential number of iterations for an elaborately designed 

problem LP. 

• Melekopoglou and Condon (1990) showed that a simple policy-

iteration method, with the smallest index pivoting rule, needs 

an exponential number of iterations  for solving an MDP 

problem regardless of discount rates. 
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    Introduction 

Linier Programming rectangular feasible region 

 

 

 

 

 

 

 

Number of Iterations (or number of vertices generated) is  

   2n = 8. 6 



The number of different basic feasible solutions (BFSs) generated by the 

simplex method with Dantzig’s rule (the most negative pivoting rule) is 

bounded by 

 

𝑛 𝑚
𝛾

𝛿
log 𝑚

𝛾

𝛿
 

where 

n  : The number of variables 

m  : The number of constraints  

𝛿 , 𝛾 : the minimum and the maximum values of all the positive elements of 

primal BFSs 

When the primal problem is nondegenerate, it becomes a bound for the 

number of iterations. The bound depends only on the constraints of LP 
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     Result (Tomonari Kitahara · Shinji Mizuno) 



If apply the result to an LP where a constraint matrix is totally unimodular 

and a constant vector b  is integral, the number of different solutions 

generated by the simplex method is at most 

 
𝑛 𝑚 𝑏 1 log 𝑚 𝑏 1  
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     Result (Tomonari Kitahara · Shinji Mizuno) 



     Result (Yinyu Ye) 

The classic simplex method, or the simple policy-iteration method, with the greedy 

pivoting rule, is a strongly polynomial-time algorithm for MDP with fixed discount 

rate: 

𝑚2 𝑘 − 1

1 − 𝛾
. log

𝑚2

1 − 𝛾
 

and each iteration uses at most m2k arithmetic operations, where 𝛾  is the fixed 

discount rate 

 

In general the number of iterations is bounded by 

𝑚2 𝑛 − 𝑚

1 − 𝛾
. log

𝑚2

1 − 𝛾
 

where n is the total number of actions. 
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      Linier Programming and Its Dual 

The standard form of Linier Programming is  

   min    cT x,               (1) 

  subject to  Ax = b,   x ≥ 0,  

where A ∈ Rmxn, b ∈ Rm and c ∈ Rn are given data, and x ∈ Rn  is a 

variable vector. 

The dual problem of (1) is 

   max    bT y,           (2) 

  subject to  ATy + s = c,   s ≥ 0,  

where y ∈ Rm and s ∈ Rn  is a variable vector. 
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      Assumptions 

Assume that 

• Rank (A) = m, 

• the primal problem has an optimal solution, 

• an initial BFS x0 is available. 

Let x∗ be an optimal BFS of the primal problem (1), (y∗; s∗) be an optimal 

solution of the dual problem (2), and z∗ be the optimal value of (1) and (2). 

 

Given a set of indices B ⊂ {1; 2; : : : ; n},  we split A, c, and x 
according to B and N = {1; 2; : : : ; n} − B  like 

 𝐴 = 𝐴𝐵, 𝐴𝑁 ,  𝑐 =  
𝑐𝐵

𝑐𝑁
,       𝑥 =  

𝑥𝐵

𝑥𝑁
,  
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      Standard form of LP 

The standard form of LP is written as 

   min  𝑐𝐵
𝑇𝑥𝐵 + 𝑐𝑁

𝑇𝑥𝑁                   (3) 

  subject to 𝐴𝐵𝑥𝐵 + 𝐴𝑁𝑥𝑁 = 𝑏, 
𝑥𝐵 ≥ 0,  𝑥𝑁 ≥ 0. 

 

From (1) and (3) 
Ax = 𝐴𝐵𝑥𝐵 + 𝐴𝑁𝑥𝑁 = 𝑏, 
𝑥𝐵 = 𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝑥𝑁 

Then 

         𝑐𝑇𝑥 = 𝑐𝐵
𝑇𝑥𝐵 + 𝑐𝑁

𝑇𝑥𝑁    

                    = 𝑐𝐵
𝑇(𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝑥𝑁) + 𝑐𝑁

𝑇𝑥𝑁 

         = 𝑐𝐵
𝑇𝐴𝐵

−1𝑏 + (𝑐𝑁 − 𝐴𝑁
𝑇 (𝐴𝐵

−1)𝑇𝑐𝐵)𝑇𝑥𝑁 
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The primal problem for the basis B ∈ B and N = {1; 2; : : : ; n} − B  can 

be written as 

 min    𝑐𝐵𝑡
𝑇 𝐴𝐵𝑡

−1𝑏 + (𝑐𝑁𝑡 − 𝐴𝑁𝑡
𝑇 (𝐴𝐵𝑡

−1)𝑇𝑐𝐵𝑡)𝑇𝑥𝑁𝑡 ,             (4) 

         subject to  𝑥𝐵𝑡 = 𝐴𝐵𝑡
−1𝑏 − 𝐴𝐵𝑡

−1𝐴𝑁𝑡𝑥𝑁𝑡 , 

𝑥𝐵𝑡 ≥ 0,  𝑥𝑁𝑡 ≥ 0. 

𝑐 𝑁𝑡 = 𝑐𝑁𝑡 − 𝐴𝑁𝑡
𝑇 (𝐴𝐵𝑡

−1)𝑇𝑐𝐵𝑡 be the reduced cost vector, then we can be 

written as 

            min    𝑐𝐵𝑡
𝑇 𝐴𝐵𝑡

−1𝑏 + (𝑐 𝑁𝑡)𝑇𝑥𝑁𝑡 ,                                (5) 

         subject to  𝑥𝐵𝑡 = 𝐴𝐵𝑡
−1𝑏 − 𝐴𝐵𝑡

−1𝐴𝑁𝑡𝑥𝑁𝑡 , 

𝑥𝐵𝑡 ≥ 0,  𝑥𝑁𝑡 ≥ 0. 
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      Basic Feasible Solutions (BFSs) 



Let 𝛿 and 𝛾 be the minimum and the maximum values of all the positive 
elements of BFSs. Then for any BFS 𝑥  and any j ∈ {1; 2; : : : ; n}, if 

𝑥  𝑗  ≠ 0,  we have 

  𝛿  ≤  𝑥  𝑗   ≤  𝛾,                                                  (6) 

The values of 𝛿 and 𝛾 depend only on A and b, but not on c. 
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     𝜹 = minimum and 𝜸 = maximum   

Figure of 𝛿, 𝛾 and BFSs (vertices) 



When 𝑐 𝑁𝑡 ≥ 0, the current solution is optimal. Otherwise we conduct a 

pivot. Under the most negative  rule, we choose a nonbasic variable whose 

reduced cost is minimum, i.e., we choose an index 

 

 j 
𝑡

= arg min
𝑗∈𝑁𝑡

𝑐j  

 

Set ∆𝑡= −𝑐 
 j 
𝑡 > 0, that is, −∆𝑡  is the minimum value of the reduced 

costs 
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     Pivoting rule 



x*  : An optimal basic feasible solution of (1) 

(y*; s*): An optimal solution of (2) 

z*  : The optimal value (1) and (2) 

xt  : The t-th iterate of the simplex method 

Bt  : The basis of xt 

Nt  : The nonbasis of xt 

𝑐 𝑁𝑡  : The reduced cost vector at t-th iteration 

∆𝑡 : −min
𝑗∈𝑁𝑡

𝑐j  

 j 
𝑡
 : An index chosen by most negative at t-th iteration 17 

     Notations 



Lemma 1   Let z* be the optimal value of problem (1) and xt be the t-th iterate 
generated by the simplex method with the most negative rule. Then we have 

  𝒛∗ ≥ 𝒄𝑻𝒙𝒕 − ∆𝒕𝒎𝜸.                                   (7) 

 

18 

  A lower bound of Optimal Value of Simplex method 

min    𝑐𝐵𝑡
𝑇 𝐴𝐵𝑡

−1𝑏 + (𝑐 𝑁𝑡)𝑇 

subject to  𝑥𝐵𝑡 = 𝐴𝐵𝑡
−1𝑏 − 𝐴𝐵𝑡

−1𝐴𝑁𝑡𝑥𝑁𝑡, 

𝑥𝐵𝑡 ≥ 0,  𝑥𝑁𝑡 ≥ 0. 
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    Next Section  



Proof  Let x* be a basic optimal solution of Problem (1). Then we have 

 

 

 

 

where the second inequality follows since x∗ has at most m positive 

elements and each element is bounded above by 𝛾. 
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     Proof Lemma 1 

           𝑧∗= 𝑐𝑇𝑥∗ 

    = 𝑐𝐵𝑡
𝑇 𝐴𝐵𝑡

−1𝑏 + 𝑐 𝑁𝑡
𝑇 𝑥𝑁𝑡

∗  

   ≥ 𝑐𝑇𝑥𝑡 − ∆𝑡𝑒𝑇𝑥𝑁𝑡
∗  

  ≥ 𝑐𝑇𝑥𝑡 − ∆𝑡𝑚𝛾 



A constant reduction of the gap (𝒄𝑻𝒙𝒕 − 𝒛∗) whenban iterate is updated. 

The reduction rate 1 −
𝛿

𝑚𝛾
 does not dependent on the objective vector c. 

 

Theorem 1  Let xt and xt+1 be the t-th and (t + 1)-th iterates generated by 
the simplex method with the most negative rule. If  xt+1 , xt , then we have 

 

                 𝒄𝑻𝒙𝒕+𝟏 − 𝒛∗ ≤ 1 −
𝛿

𝑚𝛾
𝒄𝑻𝒙𝒕 − 𝒛∗ .                  (8)        
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    Reduction Rate (Theorem 1) 



Proof. Let  𝑥𝑗 𝑡
𝑡  be the entering variable chosen at the t-th iteration. If 

𝑥𝑗 𝑡
𝑡+1 = 0, then we have 𝑥𝑡+1 = 𝑥𝑡 , a contradiction occurs. Thus 

𝑥𝑗 𝑡
𝑡+1 ≠ 0, and we have 𝑥𝑗 𝑡

𝑡+1≥ 𝛿 from (6). Then we have 

 𝑐𝑇𝑥𝑡 − 𝑐𝑇𝑥𝑡+1 = ∆𝑡𝑥𝑗 𝑡
𝑡+1 

                                        ≥ ∆𝑡𝛿 

 𝑐𝑇𝑥𝑡 − 𝑐𝑇𝑥𝑡+1 ≥
𝛿

𝑚𝛾
 𝑐𝑇𝑥𝑡 − 𝑧∗     

             𝑐𝑇𝑥𝑡+1 − 𝑧∗    ≤ 1 −
𝛿

𝑚𝛾
𝑐𝑇𝑥𝑡 − 𝑧∗ .              

22 

     Proof Theorem 1 



The best improvement pivoting rule, the objective function reduces at least 

as much as that with with the most negative rule. So the next corollary 

follows 

 

Corollary 1    Let xt and xt+1 be the t-th and (t + 1)-th iterates 
generated by the simplex method with the most negative rule. If  xt+1 , xt , 
then also have (8) 

 

                 𝒄𝑻𝒙𝒕+𝟏 − 𝒛∗ ≤ 1 −
𝛿

𝑚𝛾
𝒄𝑻𝒙𝒕 − 𝒛∗ . 

23 

     The best improvement pivoting rule (Corollary 1) 



From Theorem 1 and Corollary 1, we can get an upper bound for the number 

of different BFSs generated by simplex method. 

 

Corollary 2. 

Let 𝑥  be a second optimal BFS of LP (1), that is, a minimal BFS except for 
optimal BFSs. When we apply the simplex method with the most negative 
rule (or the best improvement rule) from an initial BFS 𝑥𝑜 , is bounded by 

  𝑚
𝛾

𝛿
log

𝑐𝑇𝑥0−𝑧∗

𝑐𝑇𝑥 −𝑧∗     (9)             
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     Number of solutions (Corollary 2) 



Proof   Let 𝑥𝑡  be the t-th iterates generated by simplex method and let 

𝑡  be the number of different BFSs appearing up to this iterate. Then we 

have 

  𝑐𝑇𝑥𝑡 − 𝑧∗    ≤ 1 −
𝛿

𝑚𝛾

𝑡 

𝑐𝑇𝑥0 − 𝑧∗ .           

From (8). If 𝑡  is bigger than or equal to the number in the corollary, we get 

  𝑐𝑇𝑥𝑡 − 𝑧∗  < 𝑐𝑇𝑥 − 𝑧∗ . 

Since 𝑥  is a second optimal BFS of LP (1), 𝑥𝑡  must be an optimal BFS. 

25 

     Proof corollary 2 



The number of different BFSs generated by the simplex method  

𝑐𝑇𝑥 − 𝑧∗    ≤ 1 −
𝛿

𝑚𝛾

𝑡 

𝑐𝑇𝑥0 − 𝑧∗  

1 ≤ 1 −
𝛿

𝑚𝛾

𝑡 
𝑐𝑇𝑥0 − 𝑧∗

𝑐𝑇𝑥 − 𝑧∗
 

log 1  ≤ log 1 −
𝛿

𝑚𝛾

𝑡 

+ log
𝑐𝑇𝑥0 − 𝑧∗

𝑐𝑇𝑥 − 𝑧∗
 

0 ≤ −𝑡 
𝛿

𝑚𝛾
+ log

𝑐𝑇𝑥0 − 𝑧∗

𝑐𝑇𝑥 − 𝑧∗
  

𝑡  ≤
𝑚𝛾

𝛿
log

𝑐𝑇𝑥0 − 𝑧∗

𝑐𝑇𝑥 − 𝑧∗
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     Proof corollary 2 



If the current solution is not optimal, there is a basic variable which has an 

upper bound proportional to the gap between the objective value and the 

optimal value 

Lemma 2   Let  𝑥𝑡 be t-th iterate generate by simplex method. If 𝑥𝑡 is not 

optimal, there exists j   ∈ 𝐵𝑡  such that 𝑥j  
𝑡 > 0 and  

  𝑥j  
𝑘 ≤ 

𝑚 𝑐𝑇𝑥𝑘−𝑧∗

𝑐𝑇𝑥𝑡−𝑧∗ 𝑥j  
𝑡  (10)  

For any feasible solution x. 
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     An Upper Bound proportional gap (Lemma 2) 



      An Upper Bound proportional gap (Lemma 2) 

min    𝑐𝐵∗
𝑇 𝐴𝐵∗

−1𝑏 + (𝑐 𝑁∗)𝑇 

subject to  𝑥𝐵𝑡 = 𝐴𝐵∗
−1𝑏 − 𝐴𝐵∗

−1𝐴𝑁∗𝑥𝑁∗ , 
𝑥𝐵𝑡 ≥ 0,  𝑥𝑁𝑡 ≥ 0. 

𝑥j  
𝑘 ≤ 

𝑚 𝑐𝑇𝑥𝑘 − 𝑧∗

𝑐𝑇𝑥𝑡 − 𝑧∗
𝑥j  

𝑡 

28 



Proof.  From primal (1) and dual (2), we have 

         𝑐𝑇𝑥𝑡 − 𝑧∗ = 𝑐𝑇𝑥𝑡 − 𝑏𝑇𝑦∗ 

        = 𝑥𝑡 𝑇𝑐 − 𝑥𝑡 𝑇𝐴𝑇𝑦∗  

        = 𝑥𝑡 𝑇 𝑐 − 𝐴𝑇𝑦∗  

   = 𝑥𝑡 𝑇𝑠∗ =  𝑥𝑡𝑠𝑗
∗

𝑗∈𝐵𝑡    

There exists j  ∈ 𝐵𝑡  which satisfies 

         𝑐𝑇𝑥𝑡 − 𝑧∗ = 𝑥𝑡 𝑇𝑠∗ ≤ 𝑚𝑥j  
𝑡𝑠j  

∗ 

  𝑚𝑥j  
𝑡𝑠j  

∗ ≥ 𝑐𝑇𝑥𝑡 − 𝑧∗ 

         𝑠j  
∗ ≥

1

𝑚𝑥
j 
𝑡 𝑐𝑇𝑥𝑡 − 𝑧∗  
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     Proof Lemma 2 



For any k, the k-th iterate 𝑥𝑘  satisfies 

𝑐𝑇𝑥𝑘 − 𝑧∗ = 𝑥𝑘 𝑇
𝑠∗ =  𝑥𝑘𝑠𝑗

∗

𝑗∈𝐵𝑡

≥ 𝑥j  
𝑡𝑠j  

∗ 

which implies 

𝑥j  
𝑘  ≤

𝑐𝑇𝑥𝑘 − 𝑧∗

𝑠
j  
∗ ≤

𝑚 𝑐𝑇𝑥𝑘 − 𝑧∗

𝑐𝑇𝑥𝑡 − 𝑧∗
𝑥j  

𝑡  
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     Proof Lemma 2 



Lemma 3  Let 𝑥𝑡  be the t-th iterate generated by the simplex method with 
the most negative rule (the best improvement rule). Assume that 𝑥𝑡  is not 
an optimal solution. Then there exist j  ∈ 𝐵𝑡satisfying the following two 
condition. 

1. x
j  
t > 0 

2. If the simplex method generates m
γ

δ
log m

γ

δ
 different basic 

solutions after t-th iterate, then x
j  
  becomes zero and stays zero 
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     Becomes Zero after Iterate (Lemma 3) 



Proof   For 𝑘 ≥ 𝑡 + 1, let 𝑘   be the number of different basic feasible 

solution appearing between the 𝑡 + 1 -th and 𝑘-th iterations. Then from 

Theorem 1 and Lemma 2, there exist j  ∈ 𝐵𝑡  which satifies 

 𝑥j  
𝑘  ≤ 𝑚 1 −

𝛿

𝑚𝛾

𝑘 

 𝑥j  
𝑡 ≤ 𝑚𝛾 1 −

𝛿

𝑚𝛾

𝑘 

 

From definition 𝛿 is the minimum value of of all the positive elements of 

primal BFSs. 

𝛿 ≤ 𝑚𝛾 1 −
𝛿

𝑚𝛾

𝑘 
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     Proof Lemma 3 



  𝛿 ≤ 𝑚𝛾 1 −
𝛿

𝑚𝛾

𝑘 

  

  1 ≤
𝑚𝛾

𝛿
1 −

𝛿

𝑚𝛾

𝑘 

 

        log 1 ≤ log
𝑚𝛾

𝛿
+ 𝑘  log 1 −

𝛿

𝑚𝛾
 

  0 ≤ log
𝑚𝛾

𝛿
− 𝑘  

𝛿

𝑚𝛾
 

        𝑘  
𝛿

𝑚𝛾
≤ log

𝑚𝛾

𝛿
 

  𝑘 ≤
𝑚𝛾

𝛿
log

𝑚𝛾

𝛿
                (11) 

Therefore, if 𝑘 >
𝑚𝛾

𝛿
log

𝑚𝛾

𝛿
, we have 𝑥j  

𝑘 < 𝛿, which implies 

𝑥j  
𝑘 = 0 from the definition of 𝛿 
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     Proof Lemma 3 



The event described in Lemma 3 can occur at most once for each variable. 

Thus we get the following result 

Theorem 2   when we apply the simplex method with the most negative rule 
(the best improvement rule for LP (1) having optimal solutions, we 
encounter at most 

  n
𝑚𝛾

𝛿
log

𝑚𝛾

𝛿
   (12) 

different basic feasible solutions. 
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     Bound for the Number of Solutions (Theorem 2) 

Note that the result is valid even if the simplex method fails to find an 

optimal solution because of a cycling 



If the primal problem is nondegenerate, we have 𝑥𝑡+1 ≠ 𝑥𝑡  for all 𝑡. This 

observation lead to a bound for the number of iterations of simplex method. 

Corollary 3   If the primal problem is nondegenerate, the simplex method 
finds an optimal solution in at most 

  n
𝑚𝛾

𝛿
log

𝑚𝛾

𝛿
 iterations 
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     Primal problem is Nondegenerate (Corollary 3) 



We consider an LP whose constraint matrix 𝐴 is totally unimodular and all 

the elements of 𝑏 are integers, Then all the element of any BFS are 

interger, so 𝛿 ≥ 1. Let 𝑥𝐵 , 0 ∈ 𝑅𝑚 x  𝑅𝑛−𝑚 be a BFS of (1). Then 

we have 𝑥𝐵 = 𝐴𝐵
−1𝑏. Since 𝐴 is totally unimodular, all the elements of 

𝐴𝐵
−1are ±1 𝑜𝑟 0. Thus for any 𝑗 ∈ 𝐵 we have 𝑥𝑗 ≤ 𝑏 1, which 

implies that 𝛾 ≤ 𝑏 1.  

Corollary 4  Assume that the constraint matrix 𝐴 of (1) is totally 
unimodular and the constraint vector 𝑏 is integral. When we apply the 
simplex method with The most negative rule fo (1), we encounter at most 

  𝑛 𝑚 𝑏 1 log 𝑚 𝑏 1             (13) 

different basic feasible solutions. 
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      A Totally Unimodular Matrix (Corollary 4) 
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    Next Section  



The Markov Decision Problem (MDP) 

 min             𝑐1
𝑇𝑥1 + 𝑐2

𝑇𝑥2                       (14) 

 subject to  𝐼 − 𝜃𝑃1 𝑥1 + 𝐼 − 𝜃𝑃2 𝑥2 = 𝑒, 

         𝑥1, 𝑥2 ≥ 0 

Where 𝐼 is the 𝑚 x 𝑚 identity matrix, 𝑃1 and 𝑃2 are 𝑚 x 𝑚  Markov 

matrices, 𝜃 is a fixed discount rate, and e is the vector of all ones.  MDP 

(14) has the following properties. 

1. MDP (14) is nondegenerate. 

2. The minimum value of all the positive elements of BFSs is greater than 

or equal to 1, or equivalently, 𝛿 ≥ 1. 

3. The maximum value of all the positive elements of BFSs is less than or 

equal to 
𝑚

1−𝜃
  or equivalently, 𝛾 ≤

𝑚

1−𝜃
. 
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The result obtain a similar result to (Yinyu Ye) 

Corollary 5  The simplex method for solving MDP (14) finds an optimal 
solution in at most 

n
𝑚2

1−𝜃
𝑙𝑜𝑔

𝑚2

1−𝜃
  iterations 

where 𝑛 = 2𝑚 

Result (Yinyu Ye) 

𝑚2 𝑛 − 𝑚

1 − 𝛾
. log

𝑚2

1 − 𝛾
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• Constant reduction of the gap: 

 𝑐𝑇𝑥𝑡+1 − 𝑧∗ ≤ 1 −
𝛿

𝑚𝛾
𝑐𝑇𝑥𝑡 − 𝑧∗ . 

• The number of BFSs is bounded by 

 𝑛 𝑚
𝛾

𝛿
𝑙𝑜𝑔 𝑚

𝛾

𝛿
 

• Totally unimodular case: It is bounded by 

 𝑛 𝑚 𝑏 1 𝑙𝑜𝑔 𝑚 𝑏 1  

• MDP case: The number of iterations is bounded by 

 Tomonari Kitahara · Shinji Mizuno 

  𝑛
𝑚2

1−𝜃
𝑙𝑜𝑔

𝑚2

1−𝜃
 

 Result (Yinyu Ye) 

  
𝑚2 𝑛−𝑚

1−𝛾
. log

𝑚2

1−𝛾
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